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By DaviQ 3ie_rmann, W. E. Gray, and Ju12an D. lWna~

STJM?LAEY “

Testfa of “lO-foot dialaeter, singla- and dual-rotatizag
traotor propellers ha~tng fron two “to eight blades were
oonductad In the NACA 2&foot propeller-r eeearch tunnel of “
the Langley Memorial Aeronautical Laboratory. This work
wae a continuation of previous investigations of tractor .
Fropellere. Yhe test program differed from the previous
Investigations only in the respect that the blades use~
were 50 percent wider than those prerlously employed. The
propellers were mounted at the frost end of a streamline
body with a s~metrical wing in the slipstream.

The decrease of peak efficiency with increased solid.i-
%y wns very 10:-. Increasing the soli~lty four times d.-
creaeed the ma::imum efficiency by only 6 peroent for single
rotation. The percentage ohange was even less for dual
rotation.

The effects of dual rotation and changes In solidity
were, in general, the same as the effeots found In previ-
ous investigations of standard blades.

IITEODUC!CIOIY .

Reoent in&eases in airplane onglne power and In the
alt~tuds of flight have made it necesssry to provide pro-
pellers of greater 131ado”area. S!hese blade areas ean be .
pro~lded b,y increasing the propeller diameter, the number
of blades, or the blade width.

Pr”evious reports (references 1, 2, and 3) have pra- “ .
sented the results of tests of propellers hav~ng from 2 to
8 normal-width blades. In references 1 and 2, the results
were reported for propellers In the tractor position. ‘in
refer enoe 3 the resullw were reported for Propellers In the
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pusher position. The pres’ent report presents results of
tests of similar single- -d dual-rotating tractor pro-
pellers of 50 percent greater bladb width than those
previously tested.

APPARATUS AND METHODS “
.“

The tests wore made in the NACA 20-foot propeller-
researoh wind tunnel with oquipmeat that has been provi-
OUSIY described in reference 1. A photograph of the test
set-~~pis shown in figure 1. Figuri 2 is a-dimensioned
plan drawing of the model.

Pr o~ellers.- The Eropeller blades used for the
present in~estigation were identical in section, pitch
distribution, and thicknecs ratio tc the blades used in
references 10 2, and 3 but.were 50 percent wider, except
for the transit~on portion near the shank. !Cheblades
were made of wood and ftttod Into steel sleeves machined
in accordance with SAE blade end.no. 2 standard. They
were flnlshed with a white model enamel and rubbed to an
aerodynamically smooth fiaish.

Nor identification purposes the blades will be re-
ferred to as fiwid.ebladesil and will be herein designated
315&6-1.5 (right-hand) and 3155-6-1.5 (left-hand). The
~lan form and blade-form curves are given in figure 3 for
the wide bladee as well BE for the standard-width 3165-6
bla~es.

.

The two-, three-, and four-blade single-rotcting pro-
pellers were mounted on the rear hub only; whereas the
8.1x-and eight-blade single- and dual-rotating propellers
and the fcur-blade dual-rotatin~ propellers were mounted .
on separate hubs spaood 15 inches apqrt. Angular aii3-
placemont botwoon the front and the rear gropeller blades
for the singl~rotatlon cocdition wan the same “for these
tests as for previous tests on the standard blades. The
front blade led the rear blade bF 85.4° fcr the frxm+
blade propelil.er,76.00 for the six+blade propeller, and
52.5° for the eight-blade propeller. Reasons for the
oholoe of these angles ha~e been given tn reference 3.

uMLQuaLsJJDu .- The naximum tunnel speed (approxi-
mately 110 mph) and tk.epower of the drive motors (two
25-hp electric motors) resulted in a Reynolds number and
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a tip speed consld.orably below thosQ experienced In flight.
Whe maximum propeller speed, which WatI 550 rpm, was ok

tainallle oqly for the low blade angles and the low rango
of advanoediameter ratios of the tests. The ttp speed,
consequently, was below 300 feet per seooildand the effect”
of cornpressibllzty oould not therefore be =eanured. The
Reynolds number of ths 0.75 ra~ius seotion was of the
order of only one and on-half milliocs.

The s~e angular di.fforenoes between the right-hand
and loft-hand propeller-blade settings were used for the
dual-rotation tests with tho wide blade as had been used
with the standard-width blade. The left-hand (front) pro-
peller was set at e?- v~lnes.of blade setting and the
right-hand (rear) propeller was sat to absorb approximate-
ly the same power as the loft-hand propeller for the peak “
offiaiency condition only. A piot of the a~gul~ differ-
onco between the front and the rear propeller-blade set+ .
ings is given In figure 4. The rear propeller was set at
the same blade angle aG the front propeller for the 10°
and the 15° blade angle. ~he speed of the right-hand pro- .
peller was uafnta~ned equal to the speed of the left-hand
propeller throughout the tests. The test prooedure was
tho same as the procedure used for investigations of ref- “
erences 1, 2, and 3.

EXSULTS AM2 DISOIJSSIOli

The measured values have been reduoed to the usual
coefficients of thrust, power, ~a ~ropulsive efficiency,

offechi.vethrust

p aa.bd

en~lno power

p n3D6
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where o “

P power absorbed by propeller, fobt-poun~s per second

V airspeed, feet per eecond

n prOpeller rotatlo”nal speed, revolutions per second

D propeller diameter, feet

P mass density of the air, slugs pm cubic foot

The effective thrust is the measured thrust of the
propeller-bod~ combination plus the drag of the body
measured separately,

Several comparisons have been made on a basis of the
activ!ty factor for the propeller uait, expressed as

1000CO /“’1”0 ~=~d~Total acti~ity factor = B x 16
J ()F! if ()R
0.2

where

r radius to any station along filade, feet

R radius of pro~eller, feet

B number of blades

Rhe fi~res giving the basic propeller characteris-
tics are presented in the following table:

.—

B’igure
—--

5t08
9 to 12
13 to 16
1? to 21

. 22 to 26
26 to 3C
51 to 34
35 to 39

-.

.— . .-

Number %lades

2
3
4
4
6
6
8
8

--— -—

Rotation

single
single
single
dual

single
dual
single
dual

Remarks

Tested in rear hu
Do.
Do.

..-.
■ 1
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Various comparisons ma tleeign aharte are p.reOented
in figurem 40 to 62, aa follows:

-. ...-. ---.:-, -,---...> -.. .-,

~igure
‘g

Lt$l 40 Ikffeot of dual rotation on efficiency en-.
vel~pes

!“, 41 Vertatlons. in efficlenay gain due “to dual
rotation with t301idltyand.V/nD

~ 42 to 44 Effeot of dual r<tation on”efflciency at
ocmstant power

45 Efficieno~enveloFe ooaparisons for differ-
ent sollditlee

46 to 52 Ilffeot of soltdlty on efficiency at constant
power

53 Efficiency-envelo~e cioaparisons for pr-
pellers haviEg the”same solidity but a
differelit ~umber of blades

54 to 55 Effect of number of blades on efflcienoy at
constant power and solidlty

56 to 60 Variation of thrust-coefficient with aativity
f~ctor

61 Design oh&t for propellers 3155-6-1.5 and
31:6-6-1.6 of different ”solidlties; single
rotation

62 Des5gn chart for propellers 3155-6-1.5 and
3156-6-1.5 of different solidifies; dual
rotation

EX~=- ~~e effects of Cual rota-
tion appear to be abcnztthe same for wide blades as noted
for the standard blades reported in references 1, 2, and
3. These effects may be studied ol”oselyby referring to
the basi~ propeller..oharacterltiticsgiven in figures 17
to 39 wherein results from the singl~rotation tests are
superimposed on the results from %he dual-rotation tests
for three representative angles.

.
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A comparison of the envelope curves for slngl- and “

dual-rotating propellers of the same solidlty is given in
. figure 40. “The four-blade duel-rotating Eropeller was
from 1 to 3 percent more efficient than the slngl-otat-
ing propeller; whereas the six+blade propeller was from “.

, 3 to 4 percent more effi.oient. The gain in efficiency
through dual rotation was slightly less for the eight-
blade propeller than for the sixblade propeller. As
this result sesme~ contrary to established. trends (see s
figure 41) and also to theoret~cal considerations, it was
thought that some of the reeuits might he in error. 2e-
peat tests, however, of both the SIZ- and the eight-blade
propellers checked the origiaal tests.

The gains through dual rotat”i~n, for equal solldi-
ties, were roughly the same for the wide blades (fig. 41)
as for the standard blades previo-asly tested. Small
differences noted are within the e~erimental accuracy. -

!Cheresults of references 1 and 2 have Indicated ‘
that the gains due to dual rotation would be e+~ected to
be about twice as great for the condition with the wing .
removed as for the condition with the wing in place.
The gains would also be e~eotod to be greater for the
pusher position than for the tractor position.. (See ref- .
erence 3.)

Since dual-rotating propellers absorb slightly more
power than single-rotating propellers, a sllghtly better
comparison of the effect of dual rotation on efficiency
Is provided inafigures 42 to 44 wherein comparisons are

5!hegain through dualmade on the basis of constant CP.
rotatton was more pronounced for the takeoff and climb
ing conditions than for high speed, espeolall~ at high
values of Cp.

Z$fect of soz~ait7.- The effi-oi6nc7 envelope curves -
in figure 45, which represent . a blade efficiency, lead to
the sane general conclusions as similar curves In refer- .
encee 1 to 3. An increase In solidity due to an increase
in the number of blades from two to eight resulted In a
loss of blade efflcienc$y amounting to as Much as 6 percent
for single rotation. The difference In efficiency due to
the change from a al= to an eight-blade propeller wae
.apparentiy less than the percentage accuracy of testing,

. since the same envelopes were faired through both sets of
curves. With dual rotation, the loss in blade efficiency
due to increased solidity was less in general than for -
single rotation; the loss was, however, appreciable.
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It WaS realized that”efflclenog @,6i~p06;b”ieia solely
“onT/nD e-erved-m “au umt%zirksts of .oomar Ivgon for the
propeller as a whole because, for any given vql’ud“of’’-ad-“ “ .
vanoe-aiameter ratio, the power absorbed was nearly pro-
portional to the number of blades. In figures 46 to 52,
therefore, tho offioienoy “comparisons for the various
prope~lers have been plotted at certain assumed values of
the power- ooefficiest. Yor the take-off ,and climb oondi-
““tlbns”,.thera was an ~ppreoiabl~ ihore.atae.in ~effmioienoy
w$th inoreaeing number of blades, part iou$~rly for:the
higher >ower cbeff%cients. ..“For” a prop Olldr &esignOd to
give the best performance at “hi&b speed, some .1OSS In ef-

“f5ci.enay.&t””high-speed im unavbldable” If +he”.sol~d.lty is
inoroased to improve the takeoff.

,.. . .. . .

,.

.“

. .

.As a f$~.mtapproximation, the e.ffeotof inor.easing
the solldi%y may be co”isit16re@.to”be”t~e 8ame whether this

“.““increase .3s .obt~3+nedby vcrylng” either the Flade width or
the number ot blades. l.fo~erntheory (rbEerenoes “4 and 6)
inalcabes , howcwex, that for a given solidity the effi-

““cisncy will .incre,~eewith the number of blades. The
: pr et3sit e~ei lz,ea~i,“in&ioate,.npverthbless, that the dif-
ferences in efficiency.,werejomalz and.were, in general,
within the experImsntal error. (See figs. 53 to 55.)

The problem ~ften arises in design work of correct-
ing propell er-performan ce..computations for differences in
actlv!ty Xactio?betiwcen the propeller” tha% is being used.

and the propelicr for which te@t results are available.
In osder to.fa.cll~tate””quchoorrdctioqs, plots of OT
agaicst ic+%v:ltyfactdr.”for oonptant values of Cp are

.,in.clut.ed for se~”aralvalues of V/nD . (See figs. 66 to
60;) “Tho plot for.”V/nD.* O is n~t inolqded.because the
.resti~”tefrom et~iio thruut tests are apt y~.tav.al.labl~.

.- -.. . . .. . . . .. . .

..-,

;“Ll!h%resulte. for Both .standakd,.”and.~lde-~,lad&, whiah
we .inxl.uoded,allow a fairly accurate estimate of the ef--
f cot.of chapgee k“ act”.ivityfactor on .t@.w:st. The results .
fem.wtta %~adea a~roo fairly well w~.ththe results fdr the
standkrd blades except -in the etalling range, where the
wide kiades exhibit a higher thrust for a given power oo-
ef-f”icient.J . . ,. .. .. .: .-. - . :

QEz?site OS charts.- In figure 61 is presented a
composite of the envel.opee of O.e charte for singl- ‘ .
rotating propellers and .Infigure”62, a composite for ‘dual-
rotatlng propellers. The figures may serve as an aid in

a
~.

-—. . .. .. ..-... ... ..- -. -. .. .- , —.. -



8

preliminary design for the eeleation of a suitable pro--
peller and should he used in oan#unction with a speed- “ ‘“
aavance-iliameter ratio charts.such as figure 58 of refer-
ence 3, from whloh a value of V/rig may be fouml for the
limiting tip speed. Zfficiencles and diameters may he .
aeteranined for several solidifies from the composites.
These charts proviae a measure of the relative diameter of
aifferent propellers having a ili.fferentnumber of blades
as well as a comparison of the efficiency of propellers
selected on a has~s of .Ce, irrespective of the diameter.

COI?CLUSICUS

1. The maximum efficiency for extremely hfgh sol~dt- “
ty propellers wae relatively high. A propeller having a
total acti~ity factor of 1076 had a maximum efflolency of
83 pe?cent for single rotation and.85 percent for dual
rotation, as conpared with 88 peraent for a conventional
tk-ee-blade propeller having an activity factior of 269.

2. The general effects of dual rotation founa in,
“ this investigation of wide-blade propellers differea
l~ttle from the effeots found In ?revious reports on stand-’
ard-blade propellers. These effects are summarized as
follows:.

(a) Dual-rotatirig propellers absorbed substantially
more power for the peabefftciency condi- “
tton than slnglerotating propellers of the
same solidity; the effeot was even more pro-
nounced for the take-off ~a climb aonditlons.

(l))Dual-rotating propollors were found to be sul+
stiantiallymore e#’fiaiont for the takeoff
and climbing conditions of flight than the
single-rotating propellers, particularly for
operation at high power coefflctents.

3. The general effects of changes in number of bladea
found in thts i?avest~gat$on of wide-blade propellers agree

with results of Invest$gattoqe on stanaard-blade propel-
lers. These effects are summarized as follows:

(a) The peak blade efficiency was found to deorease
with tncreased number of blades; this effect .

.
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was more pronounced for single-rotating pro-
,- ~peller.s.than_.f.o.rt,du~l-rotat ing propellers...—..- .. ..- .

(b) The effioienoy for the take-off and olimblng
conditions Increased substantially with in-
creased number of blades for oonstant power
Input with a slight loss at the high-speed
oondition.

4. The peak effici.enayfor a four-blade sfngle- or
dual-rotating propeller was found to differ from a six
blade propeller of the same solidity by not more than 1
or 2 peroent.

Langley Memorial Aeronautical Laboratory,
Watlonal Ad~isory Commtttee for Aeronautics,

Lan@ey Yield, Va.

RE3’EUNCIES

1. Blermann, David, and Eartman, Edwin P.: . Wind-Tunnel
Tests of Fo~lr-and Six-Blade Single- and Dual-Rotating
Tractor Propellers. MA~A Rep, Eo. 747, 194S, .

2. Blermann, Dayid, and Gray, W. H.: Wind-Tunnel Tests
of E~ght-Blade Single- and Dual-Rotating Propellers
in the Tractor Position. ITACAARR, ~OV, 1941.

3. Blermann, David, and Gray, W. H.: W5nd-Tunnel Tests
of Singlo- ana Dual-Rotating Pusher Propellers
Havtng from Two to SlightBlades. HAOA ARR,
Bob. 1942.

4. Hartman, Eldwin P., anti Biermann, Davla: The AeroaP
namio Oharactorlstios of Yull-Soalo Propellers
Having 2, 3, and 4 Blades of Olark Y ana E.A.I’.
6 Airfoil Sootions. lTAoA~Opo ~0, 6“40,1938...

5. Glauert, H,: Airplane Propellers. VO1. IVS alv. L
of Aero@namio Theory, W. U. 3)urand, ea., Jullus
Spr3nger (Berlin), 1935$ pp. 169-360.

..

.



s ~.—-—---===%7x- *&_ f’ --1”<”—-—— ---- _. —_____ .___ =___ ______ -=~.,- __L-. .
------- .. . ~ ---

Figure l.- Test set-up. Eight-blade dual-rotating propeller with wing,
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Fignre4.-Differenoe in blade angle at 0.76R
for equal torque at p+mkeffioleney.
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Figure 7.- Efficiency curves for two-blade single-rotating rmopeller.
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NACA Fig. 40

V/nD

Figure 40.- Effect of dual rotation on efficienc:~ envelopes.
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